30 Years of Photodissociation Regions:

A symposium to honor David Hollenbach's lifetime in science Asilomar, CA, USA - June 28th to July 3rd, 2015

CH⁺(J=1-0) line detection in a high-z ultra-luminous galaxy, SDP17b: the first probe of a massive turbulent halo

Falgarone Edith¹, Zwaan Martin², Godard Benjamin¹, Bussmann Shane³, Bergin Edwin⁴, Omont Alain⁵, Bournaud Frédéric⁶, Elbaz David⁶ and Andreani Paola²

- ¹ Ecole Normale Supérieure, Observatoire de Paris, CNRS, Paris, France
- ² ESO, Garching, Germany
- ³ Cornell University, Cornell, NY, USA
- ⁴ University of Michigan, Ann Arbor, MI, USA
- ⁵ Institut d'Astrophysique de Paris, Paris, France
- ⁶ CEA/AIM, Saclay, France

e-mail: edith.falgarone@ens.fr

We illustrate the power of CH $^+$ spectroscopy at high spectral resolution with the first detection by ALMA of a CH $^+$ (J=1-0) line in an hyper-luminous galaxy, SDP17b at z=2.3. It is a weakly lensed galaxy ($\mu=3.56$) of intrinsic FIR luminosity $L_{FIR}=2.07\times10^{13} L_{\odot}$, implying an extreme star formation rate $SFR=2325 M_{\odot}$ yr $^{-1}$ (Negrello et al. 2014). Unlike other molecular tracers, the unique chemical and spectroscopic properties of the CH $^+$ cation make it a tracer of the turbulent energy trail, from its scale of injection to that of dissipation at which CH $^+$ forms (Godard et al. 2014). In SDP17b, CH $^+$ (1-0) absorption is detected against the dust continuum and a broad emission line. The absorption probes a massive turbulent halo of low density and the emission possibly originates in a large number of irradiated low-velocity shocks.

REFERENCES

Godard, B., Falgarone, E. and Pineau des Forêts, G. (2014) A&A, 570, A27 Negrello, M., Hopwood, R., Dye, S. et al. (2014) MNRAS, 440, 1999